SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:cth ;conttype:(scientificother);pers:(Johnsson Filip 1960);pers:(Mocholí Montañés Rubén 1990)"

Sökning: LAR1:cth > Övrigt vetenskapligt/konstnärligt > Johnsson Filip 1960 > Mocholí Montañés Rubén 1990

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beiron, Johanna, 1992, et al. (författare)
  • An assessment of the flexibility of combined heat and power plants in power systems with high shares of intermittent power sources
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • There is an urgent need to reduce anthropogenic CO2 emissions from the power sector as a climate change mitigating strategy. Thus, the share of renewable energy sources in power systems, for example wind power, is increasing. However, the variability in wind power generation poses a challenge to conventional thermal power plants, as well as yielding volatile electricity prices. Once in place, wind power with low operating cost will replace higher-cost electricity generation units in the merit order, while during low-wind periods the need for thermal plants remains. Traditionally designed for stable base load, thermal power plants might thus face a future with new demands for flexible operation to stay competitive.  Combined heat and power (CHP) plants are thermal power plants that produce electricity and district heating simultaneously and, depending on plant type and fuel, they have different possibilities to vary the ratio between power and heat production. However, technical constraints place limitations on flexibility, including ramp rates and efficiency. The interconnection between the power and heat markets provides additional opportunities for load variation management. With the comparably slower dynamics of the heat market, and the possibility to store thermal energy, prospects of adapting to new and profitable operating strategies that can aid the balancing of the power system arise. This study focuses on how CHP plants can provide flexibility in a scenario with fluctuating power demand and associated volatility in electricity prices. Plant and market dynamics are analyzed to estimate the need for flexibility, and what is required of CHP units in terms of operation to meet these requirements. A CHP plant is modelled in detail with a boiler, steam cycle and its link to the district heating system, both under steady state and transient conditions, using the softwares Ebsilon and Dymola, respectively. The models are validated against operational data from a Swedish CHP plant. Transient responses to load ramps are characterized, as well as the flexibility in power-to-heat ratio, and their effects on efficiency.
  •  
2.
  • Mocholí Montañés, Rubén, 1990, et al. (författare)
  • Large-scale Torrefaction of waste wood for pulverized-coal substitution in blast furnaces: Torero project
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The overall aim of the Torero project is to be the world-first large scale implementation of the waste wood torrefaction for substitution of pulverized coal in blast furnaces. Steel making is highly dependent on coal for reduction of the iron ore in the blast furnace and for energy supply. Substitution of coal with biomass could effectively reduce CO2 emission in steelmaking. However, the steel making process has strict constrains on the properties of the fuel, making it difficult to use a heterogeneous fuel like biomass. In addition, the price of biomass, especially in a carbon constrained energy system, is higher than for coal. The Torero-project considers substitution of the pulverized coal used in the blast furnace with torrefied waste wood. The torrefaction process produces a bio-coal that is possible to mill and use in the present blast burners. Although waste wood is considered as a difficult, due to the high content of contaminants, which limits the alternative uses and, thus, makes it cost-effective in processes where it can be used. The process will be implemented at the ArcelorMittal site in Gent (Belgium), together with the sister project Steelanol, for microbiological fermentation of the carbon monoxide in blast furnace exhaust fumes to bioethanol. The combination of the two projects aims to convert waste wood to produce 80 million litres per year of bioethanol. This work is a first assessment of the Torero project concept. Process simulations are performed in Aspen Plus to evaluate the heat and mass balances of the integrated torrefaction process. The reaction mechanism of the torrefication process of the waste wood are based on small scale experiments and implemented into the reactor model. The ArcelorMittal plant in Ghent is used as a reference in the evaluation. The results of this investigation highlight performance, emissions and technical barriers including the effects of fuel properties and presence of trace species in the fuel.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
konferensbidrag (3)
Typ av innehåll
Författare/redaktör
Normann, Fredrik, 19 ... (3)
Alamia, Alberto, 198 ... (1)
Òsk Gardarsdòttir, S ... (1)
Nord, Lars O. (1)
visa fler...
Beiron, Johanna, 199 ... (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (3)
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy